
Parameter Tuning for Comparison of Learners in ordinal 
data classification 

 

Ankur Garg 
North Carolina State University 

Raleigh, NC 
agarg12@ncsu.edu 

Sanket Shahane 
North Carolina State University 

Raleigh, NC 
svshahan@ncsu.edu 

Chinmoy Baruah 
North Carolina State University 

Raleigh, NC 
cbaruah@ncsu.edu 

Abstract 

Class labels are not always nominal. They can sometimes 
have ordinal relationships among them. Bug priority 
prediction is one such problem. Such problems give rise to 
the question whether we treat these problems as 
classification problems or regression problems. In this 
paper, we evaluate a technique which treats the problem as 
a regression problem and provides our critique of their 
conclusions based on some defined key criteria. We solve 
the problem using standard classification approaches along 
with hyper-parameter tuning and compare our results based 
on statistical measures. 
 

CCS Concepts •Software Engineering → Bugs; Bug Priorities; 
•Machine Learning → Classification; Regression; Evaluation; 
Cross-validation; •Statistics → Statistical measures, Boot-
strapping, Significance tests, Effect size tests. 

Keywords Ordinal Categorical Labels, Regression, Bug 
Prediction, Statistical Evaluation, Self-tuning models 

1 Introduction 
Assigning priority levels to bugs is a major factor 
contributing towards fixing it. High priority bugs are more 
important to be fixed than low priority bugs. Increasing 
complexity of the software systems is directly correlated to 
the number of bugs detected/reported. Human evaluation of 
every bug reported is not always feasible and thus using 
machine learning techniques to automatically assign 
appropriate priority levels is a must. On a high level, 
Machine learning tasks are divided into supervised and 
unsupervised tasks depending upon what the nature of the 
data is. Having labeled data making predictions about it for 
the future makes it a supervised task whereas unsupervised 
tasks are generally grouping/clustering tasks where there is 
no label attribute attached to the data samples. Supervised 
ML tasks are further divided into Classification and 
Regression tasks having categorical and continuous labels 
respectively. Categorical labels are nominal attributes 
where order doesn’t make sense {boy, girl}, e.g. 
Continuous labels are numerical attributes where order 
does make sense. Heart rate e.g. 72 bpm < 129 bpm. 
     

An interesting fact about bug priorities is that these can be 
viewed as categories ranging from {p1 to p5}. However, 
the difference between p1 and p5 is not the same as the 
difference between p1 and p2. Thus, we can see that bug 
priorities are neither just ordinal nor just numerical. They 
are ordinal and categorical in nature at the same time since 
we have a fixed number of categories, but they have an 
ordering relationship between them {p1<p2<p3<p4<p5}. A 
natural question would be: What kind of Machine Learning 
technique should we use for such problems? Should we 
treat it as a pure classification problem or as a regression 
problem and bin the regression output into categories? 

In this paper, we study an interesting approach DRONE 
proposed by Yuan Tian et.al. [1]. They treat this problem as 
a regression problem and have proposed a greedy algorithm 
to determine the appropriate bin ranges of the regression 
output to map it to bug classes. However, we solve the bug 
priority prediction problem using standard classification 
methods and compare our results with DRONE based on 
statistical measures. 

The remainder of the paper is organized as follows: Section 
2, briefly explains DRONE proposed in [1] and we also 
provide our critique of their technique. In Section 3 we 
establish the research question for this study. Section 4, 
details out the dataset used for the experiments and the 
feature generation and processing steps. In this section, we 
also list our evaluation criteria and goals. Section 5, gives a 
detailed explanation of the methodology that we follow for 
our experiments, and the algorithms we choose to explore. 
In Section 6, we present our experiment's results and 
compare them with DRONE and also propose a simple 
modification (DRONE V2) to the original DRONE 
algorithm which yields better results on the dataset we have 
chosen to use. Section 7 presents our conclusions and 
answers to the research questions. The paper concludes 
with Section 8 with discussion of the future scope, threats 
to validity, and reproducibility of the results of this 
research. 

2 Related Work and Critique 

We study the approach proposed method called DRONE by 
[1]. It is a regression-based approach which treats the bug 
priority prediction problem as a regression problem and 
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then bins the regression output into classes {P1, P2, P3, P4, 
P5}. They divide the dataset into two parts training set and 
validation set - 50:50 split. 

DRONE works in two stages: 

Step 1: Train a linear regression model on the training set. 

Step 2: Based on the output of linear regression learner on 
the validation set: 

a. Initialize the thresholds for binning. 

b. Optimize these thresholds on the validation dataset 
using a greedy approach to maximize the Average 
F1 score. 

The exact details about the greedy optimization algorithm 
can be found in [1].  

Though DRONE seems to be a promising approach to 
predict bug priorities, some conclusions presented in [1] are 
neither convincing nor supported by statistical evaluations. 
[1] compares the DRONE with standard classification 
algorithms like Naive Bayes and SVM [11] without any 
hyper-parameter tuning and statistical evaluations. [2] has 
shown that hyper-parameter tuning can have a major 
impact on the results of the learners. This was the main 
motivation behind this project - to try to confirm (or 
contradict) the results in [1] by introducing hyper-
parameter tuning.  

Some of the conclusions made in [1] which we investigate 
in this project are: 

1. Naive Bayes could not run to completion due to 
lack of memory even after providing 8GB RAM. 

2. DRONE is better than standard classification 
algorithms (SVM [11]) for predicting bug 
priorities. 

Naive Bayes is a very fast and has a low memory footprint. 
It works by simply updating the statistics of the data. Naive 
Bayes does not require keeping the input data stored for 
testing purposes. It is an eager learner [add reference to this 
shit]. This raises questions about the first claim. 

Comparison between any learners must be supported by 
statistical evaluations. No evidence was found in [1] 
pertaining to any such evaluations. In addition to this, no 

details with regards to the parameters used to train the 
SVM learner or reasons behind selecting such parameter 
settings were found in [1]. Finally, the comparison was 
made only with SVM. Thus, we decide to investigate the 
second claim by introducing hyper-parameter tuning for a 
standard classification algorithm like Random Forest 
Classification. 

3 Research Questions 

In this section, we establish our research questions based on 
the critique provided in Section 2. 

RQ1: Can Naive Bayes [12] run to completion on the data 
set used by [1]? 

Yes 

RQ2: Can Hyper-Parameter Tuning of standard classifiers 
have a significant impact in predicting bug priorities when 
compared to DRONE? 

Yes 

RQ3: Is there statistical evidence to support that DRONE 
is better than standard classification approaches for 
predicting bug priorities. 

No 

4 Background 
4.1   Dataset 

The dataset used in this project for all experiments is 
sourced from Eclipse Bugzilla [15] repository. We consider 
bug reports submitted between October 2001 and 
December 2007. In total, we used 103,805 bug reports. The 
raw data had 11 features for each bug reports such as 
severity, creation date, summary, author, component, etc. 
The dataset contains five classes - representing the five 
priority levels of the bugs (P1, P2, P3, P4, P5). Figure 1 
shows a few sample from the dataset.  

 
We use the raw features to derive 4 kinds of features - 

Temporal Features, Author related features, Product (or 
Component) related features and Summary features. The 
methodology used to generate these features was sourced 
from the original paper [1].  

Figure 1. Sample rows from the dataset 
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Temporal Features represent the number of bugs that 
were reported in the last 𝓍 days of the current bug report 
with same severity or priority. Author-related features 
represent the number of bugs that were authored by the 
same author and in the last 𝓍 days. Product-related features 
represent the number of bugs that belong to the same 
component and were reported in the last 𝓍 days. Based on 
these three types, total of 38 features are generated - 12 
Temporal, 3 Author, 22 Product related. Apart from these, 
Severity of the bug report was used as is.  

Finally, each bug report has a text feature which 
contains the summary of the bug report. To preprocess this, 
we use a count vectorizer and generate 18k sized count 
vector for each bug report. More details about each of these 
preprocessed features can be found in [1]. 

 
4.2    Evaluation Criteria 

In this project, we use multiple criteria to compare the 
results of our experiments with the results of DRONE from 
[1]. We use macro F1 score, Average Precision, and 
Average Recall to compare the learners that we get from 
hyper-tuning standard classification methods with the 
DRONE algorithm. We use statistical t-test on cross-
validation scores for making all such comparisons. 

Apart from evaluating our learners in comparison with 
original DRONE algorithm, we also delve into following 
criterion to evaluate the usefulness of our model - Model 
Complexity and Model Stability [5].  

More details about how these criteria are used in our 
experiments are provided in Section 6. 
 

5 Methodology 
Figure 2 gives an overview of the methodology that 

we follow in this paper. The original dataset after shuffling 
is divided into 2 parts in 80:20 ratios. 20% of the dataset is 
kept for final testing and is not used in any step of 
preprocessing or training. Remaining 80% of the dataset is 
used for first preprocessing the features as explained in 
Section 3.1. The trained preprocessors are used to generate 
features for test data as well. 

  

Following algorithms are explored in the project and are 
compared with the original DRONE algorithm - Random 
Forest, Naive Bayes, and SVM. The original DRONE 
algorithm as mentioned in [1] is also implemented for the 
purposes of comparison. 
 

I. Parameter Tuning 
Our main focus in this project is on studying the effects 

of parameter tuning on classification techniques. 
Differential Evolution based parameter tuning is used to 
tune a Random Forest Classifier. Differential Evolution is a 
method that optimizes a problem by iteratively trying to 
improve a candidate solution with regard to a given 
measure of quality. Figure 3 from [3] briefly explains how 
Differential evolution finds the ‘best’ solution. Differential 
Evolution is used for tuning three different measures - 
Average F1 Score, Average Precision and Average Recall. 

Differential Evolution gives the best set of parameters 
for a particular goal {F1, Precision, Recall} but we find 
that there are many sets of parameters which yield similar 
results to that of the optimal set given by DE. Keeping in 
mind the model complexity [6][7] and model stability [5], 
we choose a simpler model (few trees in case of Random 
Forest Classifier) of optimal performance. 
 

 
Figure 3. Overview of Differential Evolution 

Figure 2. Overview of Methodology 
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II. Validation 

10-Fold Cross-Validation [14] over the training dataset 
(80%) is used while optimizing for each of the three 
objectives using differential evolution. Results from the 10-
fold cross-validation are also used for performing statistical 
tests (t-test). 
 

III. Model Stability [5] 
By model stability, we aim to determine whether the 

model has learned sufficiently from the given dataset and 
will providing additional training data drastically change 
the results expected errors. Stability test essentially tests 
whether the models has found a settlement between bias-
variance. To conduct this test training data is incrementally 
provided in different percentages of the actual data and we 
measure and plot the training and testing performance 
based on the 10-fold cross-validation of the goal of that 
model. In an ideal case scenario, we expect the two curves 
(training, testing) to stabilize to a point where the slope is 
zero. 

IV. Modification to DRONE – DRONE V2 
The original algorithm follows a percentile based 

strategy to initialize the thresholds for binning the output of 
regression for each class. We modify this approach to make 
it much simpler. Instead of using a percentile based 
approach, we decide to initialize the thresholds for each 
class - (P1, P2, P3, P4, P5) as 0, 1, 2, 3, 4. Starting with 
these thresholds, we follow the original approach of greedy 
optimization over the average F1 score. We present the 
results for the same in the next section 
 

 
Figure 4: DRONE v2 

 

6 Experimental Results 

For all the experiments, we tune Random Forest learner 
[13], using the methodology described in section 5, on 3 
hyper-parameters viz. 1. Number of Trees, 2. Minimum 
samples to split, and 3. Minimum samples at the leaf. We 
do not regulate the Max Depth of the trees as in our initial 
observations we found out that regulating this parameter 
has a negative effect on the overall results. The main reason 
for this being Depth of the tree directly contrasts Min 
Samples to Split and Minimum samples at leaf parameters 

and hence we leave Max Depth of the trees to be 
unregulated. 

We use scipy.optmize.differential_evolution from the 
python package scipy [4] for running differential evolution. 
The parameters settings used for differential evolution 
function are as follows: 

strategy: ‘rand2bin’, ‘population_size’ (also known as 
frontier): 30, mutation: (0.5, 1.9), recombination: 0.7. It 
was run for max iterations = 3. 

In case of multiple learners with similar performance on 
any metric, we select one which is simpler. In this case of 
Random Forest, we choose the one with a lesser number of 
trees as model complexity tends to be very important 
during generalization [6][7]. We also check for model 
stability for that learner based on the methodology 
mentioned in previous section. 

6.1 Experiment 1 

In this experiment, we tune the learners for Average F1 
scores across all the classes of bug priorities. Figure 5 
shows the statistical evaluations based on Cliff’s delta 
effect size test and parametric t-test on 10-fold cross- 
validation results on each of the learners. It can be observed 
from the figure that: 1. Random Forest with or without 
tuning significantly performs better than the DRONE. 2. 
Tuning the hyper-parameters of Random Forest Classifier 
yield significantly better models than the default off the 
shelf parameters. 

Before choosing a simpler Random Forest model with 19 
trees, 26 Min samples to split, and 1 Min Sample at the 
leaf, we look at the stability curve and conclude that the 
model is simpler. Figure 9 shows the stability curve of RF 
{19,13,1}. 

Table 1 shows the results of RF {19,13,1} compared to 
DRONE on the evaluation criteria of the Average F1 score. 
We find that Random Forest model tuned for average F1 
Score performs significantly better as compared to 
DRONE. 

We observe an improvement of 70% compared to DRONE. 

6.2 Experiment 2 

In this experiment, we tune the learners for Average 
Precision scores across all the classes of bug priorities. 
Figure 6 shows the statistical evaluations on 10-fold cross- 
validation results on each of the learners. It can be observed 
from the figure that: 1. Random Forest with or without 
tuning significantly performs better than the DRONE. 2. 
Tuned and non-tuned random forest model are very similar 
in precision scores. 
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We choose model with 25 trees, 2 min split samples and 1 
min sample leaf. The reason being that this model has least 
variability as compared to other models. Stability curve for 
the same in Figure 10 shows that the model is quite stable. 

Table 2 shows the results of RF {25,2,1} compared to 
DRONE on the evaluation criteria of Average Precision. 
Random Forest model tuned for average Precision performs 
around 100% better as compared to DRONE.  

6.3  Experiment 3 
In this experiment, we tune the learners for Average Recall 
scores across all the classes of bug priorities. Figure 7 
shows the statistical evaluations based on 10-fold cross-
validation results on each of the learners. It can be observed 
from the figure that Random Forest with or without tuning 
significantly performs better than the DRONE. Tuning the 

hyper-parameters of Random Forest Classifier yield a huge 
difference than the default off the shelf parameters.  

Before choosing a simpler Random Forest model with 18 
trees, 12 Min samples to split, and 2 Min Sample at the 
leaf, we look at the stability curve and conclude that the 
model is simpler. Figure 11 shows the stability curve of RF 
{18,12,2}. 

 

Table 3 shows the results of RF {18,12,2} compared to 
DRONE on the evaluation criteria of Average Recall score. 
We observe an improvement of around 200% as compared 
to non-tuned parameters and around 80% improvement 
compared to DRONE.  

Figure 5: Comparison of algorithm based on Average F1 Score 

Figure 6: Comparison of algorithm based on Average Precision Score 
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Figure 7: Comparison of algorithm based on Average Recall Score 

Figure 8: Comparison of Model building time 
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Figure 9: Model Stability for RF Model selected after tuning for F1 Score 

Figure 10: Model Stability for RF Model selected after tuning for Precision Score 
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Class DRONE RF – {19, 13, 1} 
P1 29.4% 38.1% 
P2 20.0% 33.7% 
P3 88.7% 91.5% 
P4 0.0% 33.8% 
P5 6.5% 47.7% 
Average 28.9% 49.1% 

Class DRONE RF – {18, 12, 2} 
P1 22.4% 61.97% 
P2 14.8% 46.05% 
P3 79.2% 68.34% 
P4 0.0% 55.13% 
P5 6.55% 65.83% 
Average 36.4% 59.47% 

Class DRONE RF – {25, 2,1} 
P1 29.4% 61.80% 
P2 20.0% 48.46% 
P3 88.7% 87.79% 
P4 0.0% 53.27% 
P5 6.5% 60.13% 
Average 28.9% 62.30% 

Table 1: Average F1 Score Table 2: Average Recall Score 

Table 3: Average Precision Score 

Figure 11: Model Stability for RF Model selected after tuning for Recall Score 
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SVM was also used to train a learner on this dataset. But 
when using and Intel i7 processor with 8 cores and 16 GB 
RAM, it took around 6 hours to run a single iteration of 
training and testing (without validation). Due to constraints 
of computing resources, we could compare results from 
SVM with other algorithms.  

Parameter Tuning for Random Forest, for each objective, 
on the above-mentioned computing resource, took about 45 
mins to find the optimal parameters. But in each case, we 
find statistically significant improvement in the results as 
compared to non-tuned leaners. This is significant because 
we see drastic improvement without many tradeoff in terms 
of time taken to tune the parameters. Figure 8 also provides 
a comparison among the algorithms used in these 
experiments. We find that Naïve Bayes is one of the fastest 
and Random Forest with tuning takes about 3 times the 
time for DRONE. 

We also observe that, the results we get for our DRONE 
implementation as very close to the ones mentioned in [1]. 
Specifically, for class P4, both our implementation as well 
as the [1] seem to give very close to zero for all metrics.  

For all metrics (F1-measure, Precision, and Recall), we find 
that Random Forest performed significantly better than 
DRONE. We observe that tuning for specific objectives 
(one of the metrics), can make a huge difference in 
performance. We find no evidence to support the claim that 
DRONE performs better than standard classification 
algorithms. 

Finally, we also find that in DRONE v2, simplifying the 
methodology of DRONE to use simple initial thresholds 
does improve the results significantly as compared to 
original algorithm DRONE.  

7 Conclusions 

In this section, we answer the research questions: 

RQ1: Can Naive Bayes run to completion on the data set 
used by [1]? 

Yes, we were able to run Naive Bayes [12] to completion 
of the dataset described in section 4. In fact, Figure 8 shows 
that Naive Bayes was the fastest of all the learners to train, 
cross validate, and test. 

RQ2: Can Hyper-Parameter Tuning of standard classifiers 
have a significant impact in predicting bug priorities when 
compared to DRONE? 

Yes, Figures 5,6,7 discussed in section 6 show that hyper-
parameter provides a statistically significant improvement 
in results. 

RQ3: Is there statistical evidence to support that DRONE is 
better than standard classification approaches for predicting 
bug priorities. 

No, there is not enough statistical evidence to support the 
claim that DRONE is better than standard classification 
approaches for predicting bug priorities. In case of Random 
Forest (with and without tuning) we have found enough 
statistical evidence to claim that a standard classification 
technique is better than DRONE on the eclipse bug report 
dataset. 

8 Discussion and Future Work 

Through the experiments, we find that, parameter tuning 
can make a statistically significant difference to the 
performance of a learner. We observe this effect across 
different types of objectives. While comparing any kind of 
learners, it is imperative that we perform parameter tuning 
on the measure for which we are making such comparisons.  

Another important inference was, before choosing any 
model, it is really important to measure the stability of the 
model. It provides a measure of how well the model has 
been trained. Does it need more data for better 
performance? Or has it over-fit on the current dataset? In 
our experiments, we choose any model only after 
performing this check. 

I. Threats to Validity of the results 

In this paper, we do not claim that standard classification 
methods are always better than DRONE in every case of 
predicting bug priorities. Only in case of Eclipse bug 
reports from 2001 to 2007 based on our experiments we 
conducted we claim that predicting bug priorities using a 
standard classification approach is better than treating it as 
a regression approach as opposed to the claims made by 
[1]. We suggest that the above methodology must be 
followed whenever the dataset itself changes. There might 
be cases where regression might outperform classification. 
The only way to know the best technique to predict bug 
priorities is to try both. 

II. Future Scope 

In case of ordinal data classification, deciding between 
regression-based methods or classification based methods 
is tricky. For this particular dataset, we find that 
classification based methods perform better than DRONE. 
We would like to research this further by conducting this 
experiment on multiple datasets of similar ordinal 
properties. We would also like to investigate other 
approaches for ordinal data classification (apart from 
standard classification algorithms) such as the ones 
described in [8]. Another possible point to investigate 
would be the thresholding method in DRONE as we found 
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that making simple changes to it resulted in statistically 
significant improvement in results (DRONE v2). This will 
provide a better understanding in deciding which 
methodology performs better. We would also like to 
explore other methods of hyper-parameter tuning. One such 
method which we found interesting is Particle Swarm 
Optimization [9]. These experiments would provide further 
insight into the problem of ordinal data classification and 
how parameter tuning affects it. 

III. Reproducibility of results 

Reproducibility of results being the utmost requirement of 
any scientific endeavor, we open source all of our code, 
data, and results in our GitHub repository [10] along with 
the instructions to reproduce them and advance the field of 
research. 
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